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‘Molecular signatures’ are the qualitative and quantitative patterns of groups of biomolecules (e.g.,
mRNA, proteins, peptides, or metabolites) in a cell, tissue, biological fluid, or an entire organism. To
apply this concept to biomarker discovery, the measurements should ideally be noninvasive and
performed in a single read-out. We have therefore developed a peptidomics platform that couples
magnetics-based, automated solid-phase extraction of small peptides with a high-resolution MALDI-
TOF mass spectrometric readout (Villanueva, J.; Philip, J.; Entenberg, D.; Chaparro, C. A.; Tanwar, M.
K.; Holland, E. C.; Tempst, P. Anal. Chem. 2004, 76, 1560-1570). Since hundreds of peptides can be
detected in microliter volumes of serum, it allows to search for disease signatures, for instance in the
presence of cancer. We have now evaluated, optimized, and standardized a number of clinical and
analytical chemistry variables that are major sources of bias; ranging from blood collection and clotting,
to serum storage and handling, automated peptide extraction, crystallization, spectral acquisition, and
signal processing. In addition, proper alignment of spectra and user-friendly visualization tools are
essential for meaningful, certifiable data mining. We introduce a minimal entropy algorithm, ‘Entropycal’,
that simplifies alignment and subsequent statistical analysis and increases the percentage of the highly
distinguishing spectral information being retained after feature selection of the datasets. Using the
improved analytical platform and tools, and a commercial statistics program, we found that sera from
thyroid cancer patients can be distinguished from healthy controls based on an array of 98 discriminant
peptides. With adequate technological and computational methods in place, and using rigorously
standardized conditions, potential sources of patient related bias (e.g., gender, age, genetics,
environmental, dietary, and other factors) may now be addressed.
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1. Introduction

Serum proteomics and peptidomics are gaining popularity
among oncologists in their quest for cancer biomarkers with
high diagnostic accuracy. This is based on the premise that
sera from cancer patients contain small proteins and peptides,
detectable by mass spectrometry (MS), that reflect the presence
and the biology of a tumor. Since the first report1 that serum
polypeptide profiling could serve as a diagnostic method for
ovarian cancer, many papers have appeared in the literature

using similar approaches.2-5 In a number of these publications,
discovery of several biomarker patterns are reported, for various
cancers, that have diagnostic sensitivities and specificities
approaching 100%. If these early results are as robust and
reproducible as they seem, then serum proteomics will un-
doubtedly attain a prominent and lasting position in the future
of cancer diagnostics.

Despite initial excitement, skepticism about the methodology
and the results is mounting in the scientific community.6-10

The simple fact that different research groups have found
different discriminatory markers when analyzing similar samples
suggests that the serum proteomics methodology may not be
reproducible and/or the MS data have been incorrectly inter-
preted. Several lines of evidence indicate that uncontrolled
variables related to both clinical and analytical chemistry may
have tainted the published results. Some of the observed
“differences” may represent artifacts of blood sample collection
and serum preparation, or storage and handling. In addition,
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patient related variables such as gender, age, genetic, environ-
mental, dietary, and psychological factors could introduce bias.
As many serum proteomic studies have been conducted outside
of traditional peptide chemistry/MS laboratories, key variables
affecting sample processing, mass analysis and associated
signal processing may have been overlooked. Instead, a ‘black
box’ approach has usually been taken whereby serum samples
were analyzed using a turnkey, commercial platform and the
mass data obtained for large cohorts processed without ad-
equate alignment of the spectra. Such ‘blind’ sample processing
and analysis, with little or no operator control and without
interactive data reduction, may not be the best way to uncover
novel disease markers.

Serum peptidomic profiling has also stimulated bioinfor-
maticists to develop models to analyze and compare large
numbers of data points. Most groups employ ‘training’ and
validation sets of both cancer and control samples, or at the
very least cross-validation among a single cohort of cases and
controls,1-3,11,12 combined with machine learning methods such
as support vector machines (SVM),13 K-nearest neighbor (K-
NN)14 or decision trees.12,15 Earlier work utilized entire spectra
(g20 000 data points) as input data 1 but given the paucity of
true peptide peaks, the vast majority of the data points
represented instrument noise and made analysis unnecessarily
complicated. Extracting ‘real’ peaks, while relatively simple to
the expert eye, has now become the focus of considerable
informatics effort.7,16,17 Several early reports clearly illustrate that
peptide profiling done with minimal knowledge of protein
chemistry and MS can easily result in artifactual findings.

We have previously reported a technology platform for the
simultaneous measurement of large numbers of serum polypep-
tides.18 It uses magnetic bead-based, solid-phase extraction of
mainly small peptides and a MALDI-TOF MS read-out. The
technology is automated on a liquid handling robot in a 96-
well microtiter plate format for throughput and reproducibility.
The current version utilizes reversed-phase batch processing,
although multidimensional chromatographic procedures could
be implemented. The system is intrinsically more sensitive than
any surface capture on chips as spherical particles have larger
combined surface areas than small-diameter spots. When
combined with high-resolution MS, hundreds of peptides are
detected in a single droplet of serum. Using our system, we
have analyzed several thousand serum samples obtained from
cancer patients.

From these observations, and from further studies, we have
identified additional uncontrolled variables in the clinical and
analytical chemistry components and in MS signal processing
(prior to statistical analysis) that have misled us in the early
days, as well as the authors of some of the recently published
papers, into arriving at falsely positive conclusions. Here, we
highlight some of these pitfalls, and offer simple recommenda-
tions to avoid or correct systematic bias. We also present an
improved spectral alignment program and software tools for
data visualization and interactive analysis.

2. Materials and Methods

2.1. Materials. Acetonitrile was obtained from Burdick and
Jackson (Muskegon, WI), trifluoroacetic acid (TFA) from Pierce
(Rockford, IL). Premade a-cyano-4-hydroxycinnamic acid (ACCA)
matrix solution was purchased from Agilent (Palo Alto, CA).
SiMAG-C8/K superparamagnetic, silica-based particles (e1
micron diameter; 80% iron oxide; nonporous), bearing C8
reversed-phase (RP) ligands, were obtained from Chemicell

(Berlin, Germany). Other batches of C8 particles (Chemicell)
with variously modified properties have also been used for
comparative purposes. Human serum control (# S-7023, lot
034K8937) was obtained from Sigma (St Louis, MO). Serum
peptide processing was done in 0.2-mL polypropylene tubes
(8-tube strips; or 8 × 12-tube ‘Temp Plate II’) from USA
Scientific (Ocala, FL).

2.2. Serum Samples. Blood samples from volunteer subjects
with no known malignancies and from patients diagnosed with
metastatic thyroid carcinoma were collected following a clinical
protocol. All collections were approved by the MSKCC Insti-
tutional Review and Privacy Board. Blood samples were col-
lected in 8.5-mL, BD Vacutainer SST ‘tiger-top’ tubes (Becton
Dickinson # 367988, Franklin Lakes, NJ), allowed to clot at room
temperature for 1 h, and centrifuged at 1400-2000 RCF for 10
min, at RT. Sera (upper phase) were transferred to four 4-mL
cryovials (Fisher # 0566966), ∼1 mL serum in each, and stored
frozen at -80 °C until further use. The standard procedure is
summarized in Table 1. Upon arrival at the mass spectrometry
(MS) lab, the cryovials (source vials) were barcoded using the
MSKCC Clinical Proteomics LIMS (see below) and a Z4M
barcode printer (Zebra Technologies, Vernon Hills, IL). One
cryovial of each sample was thawed on ice and used to generate
nine smaller aliquots (50 µL each) in micro-eppendorf tubes
that were also barcoded and stored at -80 °C in barcoded
freezer boxes before analysis. Each serum sample had therefore

Table 1. Protocol for Serum Peptide Sample Preparation

Clinical Services:
1. Collect venous blood into one BD Vacutainer SST tube, aka tiger-

top (Becton Dickinson # 367988). Fill tube to top (8.5 mL).
2. Following the manufacturer’s instructions:

•Gently invert the tube 5 times to mix clot activator with blood.
•Allow blood to clot for 1 hour at room temp (RT) in

vertical position.
3. Place the SST tubes on wet ice in vertical position until transport.

•Put tubes in color-coded bag (PROTEOMICS).
•Put in a cooler for transportation to the

Clinical Chemistry Lab.
•Delivery should be within 2 hrs after clotting.

Clinical Chemistry Lab:
4. Spin SST tubes in centrifuge at 1400-2000 RCF for 10 min, at RT.
5. Transfer the serum (upper phase) to 4-mL cryovials (Fisher

Scientific # 0566966).
•Tubes labeled in advance.
•Volume of serum per cryovial should be approximately 1 mL.

6. Immediately store all samples at -80 °C. Avoid freeze-thawing
cycles.

7. Transport samples on dry ice to the Mass Spectrometry Lab.
Mass Spectrometry Lab:

8. LIMS and Barcoding:
•Enter all sample information into LIMS system before

samples arrive.
•Barcode nine empty 0.25-mL micro-eppendorf tubes for

each sample.
•Barcode incoming cryovials (see #7). Samples must remain

frozen on dry ice.
9. Store all cryovial samples again at -80 °C. Avoid freeze-

thawing cycles.
10. Prepare small aliquots for one-time use:

•Thaw cryovial samples on wet ice.
•Aliquot 9 × 50 µL of each sample in the 9 micro-tubes.
•Put in barcoded freezer boxes.
•Immediately return all to -80 °C storage.

Avoid freeze-thawing cycles.
11. Randomize all samples to be analyzed and generate layouts

for the individual runs.
12. Solid-phase extraction and MALDI plate spotting:

•Thaw one 50-µL aliquot of each sample on wet ice.
•Put in the correct location of the 96-well tube holder.
•Immediately start the automated, solid-phase peptide

extraction.
•Take MALDI plate to MS instrument and start spectra

acquisition within 1-2 hrs.
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been frozen and thawed twice before it was subjected to solid-
phase peptide extraction and MS (see below).

In selected cases, the standard blood collection and serum
preparation protocol was modified for investigative purposes:

2.2.1. Sera Prepared in ‘Red-Top’ Tubes. Blood samples
were collected from from healthy volunteers in 8.5-mL, BD
Vacutainer, glass ‘red-top’ tubes (BD # 366430), and sera were
prepared with the same protocol used for the blood collected
in SST blood collection tubes (Table 1).

2.2.2. Clotting Times. Blood samples were collected in 8.5-
mL, BD Vacutainer SST tubes and allowed to clot at room
temperature for 5 min. (‘t ) 0’), 1 and 5 h. The rest of the blood
collection protocol was the same as in Table 1.

2.2.3. Freeze-Thaw Cycles. Frozen sera were thawed on wet
ice and then immediately refrozen on dry ice and returned to
-80 °C for 30 min; this procedure was repeated up to 5 times.
Aliquots were taken after each freeze-thaw cycle and subjected
to automatic solid-phase extraction and MS.

2.3. Automated, Solid-Phase Peptide Extraction. The re-
versed-phase (RP) batch extraction protocol is automated using
a ‘Genesis Freedom 100’ (Tecan; Research Triangle Park, NC)
liquid handling work station 18. Magnetic beads were generally
pulled to the side of the tubes (during ‘binding’, ‘washing’, and
‘elution’). To this end, magnetic strips were embedded in the
96-tube holding plates, between the rows-of-eight. This device
was constructed using epoxy-coated, Neodymium-iron-boron
(NdFeB) magnets (2 3/4"/1/4"/1/8"; L/W/H) from K&D Mag-
netics (Boca Raton, FL). To resuspend the beads in a minimal
volume of elution solvent, they must first be collected at the
bottom of the tubes, requiring the magnets to be positioned
directly underneath in a 96-well micro titer plate layout. A plate
holder containing 96 NdFeB-magnetic disks, 1/4" in diameter
and 1/4" thick (obtained from Force field; Fort Collins, CO),
was therefore constructed. A 96-well plate cooler (Eppendorf,
Westbury, NY) was incorporated into the system to reduce
solvent evaporation.

The Gemini 100 system was programmed either directly via
its standard software or, when individual wells needed to be
accessed independently, indirectly through its work-lister
capability. Once in the 96-well format, this system automates
all of the liquid-handling steps, including magnetic separation
via a robotic manipulating arm, mixing of eluates with MALDI
matrix and deposition onto the Bruker 384-spot MALDI target
plates.

2.4. MSK Clinical Proteomics LIMS. The large number of
samples that can now be processed by the automated system
creates problems in locating and accessing both the physical
samples and their associated data. In collaboration with the
North Shore Long Island Jewish Health System (Manhasset, NY)
biorepository group, we have developed a complete Laboratory
Information Management System (LIMS). By characterizing and
standardizing the entire sample collection and serum prepara-
tion process, we designed a SQL server database with a
webpage based interface. This LIMS provides (i) a physical
sample inventory control system with bar coding capabilities
for easy identification of samples, (ii) a database storing clinical
and nonclinical sample information, and (iii) the generation
of ‘AutoX’ files, necessary to operate the AutoFlex MALDI-TOF
mass spectrometer automatically through the ‘AutoXecute’
function. The web interface enables platform independent
entry and access to data and other control features. Together,
these capabilities make the LIMS a complete information

solution. It tracks the handling of samples from storage to the
final mass spectra.

2.5. Mass Spectrometry. Peptide profiles were analyzed with
an Autoflex MALDI-TOF mass spectrometer (Bruker; Bremen,
Germany) equipped with a 337 nm nitrogen laser, a gridless
ion source, delayed-extraction (DE) electronics, a high-resolu-
tion timed ion selector (TIS), and a 2 GHz digitizer. The
standard protocol, except where modified for investigative and
optimization purposes, was as follows. Separate spectra were
obtained for two restricted mass-to-charge (m/z) ranges, cor-
responding to polypeptides with molecular mass of 0.7-4 kDa
(“e4kD”) and 4-15 kDa (“g4kD”) (assuming z ) 1), under
specifically optimized instrument settings. Each spectrum was
the result of 400 laser shots, per m/z segment per sample,
delivered in four sets of 100 shots (at 50-Hz frequency) to each
of four different locations on the surface of the matrix spot.
The effective laser energy delivered to the target was carefully
controlled to be 16 µJ (( 10%) per shot (see below). A weekly
performance test with a control commercial human serum is
done and the effective laser energy delivered to the target is
modified accordingly. The entire irradiation program was
automated using the instrument’s ‘AutoXecute’ function. Spec-
tra were acquired in linear mode geometry under 20 kV (18.6
kV during DE) of ion accelerating and -1.3 kV multiplier
potentials, and with gating of mass ions e 400 m/z (e4kD
segment) or e 3000 m/z (g4kD segment). DE was maintained
for 80 (e4kD) or 50 nanoseconds (g4kD) to give appropriate
time-lag focusing after each laser shot. Peptide samples were
always mixed with two volumes of premade a-cyano-4-hy-
droxycinnamic acid (ACCA) matrix solution (Agilent; Palo Alto,
CA), deposited onto the stainless steel target surface, in every
other column of the 384-spot layout, and allowed to dry at
room temperature. Thirty fmols (per peptide) and 500 fmols
(per protein) of commercially available calibration standards
(Bruker Daltonics # 206195 (<4kD) and # 206355 (>4kD)) were
also mixed with ACCA matrix and separately deposited onto
the target plates, adjacent to each spotted serum sample (one
sample/one standard), in the alternating columns.

2.6. Laser Pulse Energy Measurements. The Bruker AutoFlex
MALDI-TOF instrument does not provide a direct measurement
of the laser energy that is delivered to the sample. Instead, it
features an uncalibrated setting (‘control bar’) of the laser
power, that ranges from 0 to 100% on an arbitrary scale without
providing an absolute value. The instrument does have a
power/energy monitoring probe at the output of the nitrogen
laser, and the beam is attenuated in the path to the sample by
means of a matched pair of counter-rotating optical flats. The
attenuation control provided to the user rotates the two flats
from a position of maximum reflectance (set to 0%) to a
position of maximum transmittance (set to 100%).

The nitrogen laser (MNL 200-C; Lasertechnik, Berlin, Ger-
many) in the AutoFlex instrument has a manufacturer specified,
nominal output energy of 105 µJ per pulse. The value reported
by the laser monitor of the instrument, before the attenuator,
was 108 µJ. We measured the laser energy per pulse, by
integrating 100 pulses, with a J9-484 pyroelectric joulemeter
probe (18.8 VJ-1 responsivity) (Molectron Detector Inc., Port-
land, OR) before and after the attenuator set at maximum
transmittance (100% on the control bar). Our readings were
1.8 mV and 1.47 mV, respectively, indicating that the effective
maximum transmittance of the attenuator is only 82%. The
difference between our measurement with the pyroelectric
detector (1.8 mV/18.8 VJ-1 ) 96 µJ) and that of the laser monitor
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(108 µJ) can be attributed to a lack of accurate calibration of
our detector. Nonetheless, it is the relative measurements
(before/after the attenuator) that are relevant.

We then measured the laser energy after the attenuating
device as a function of the user controllable attenuator settings.
These measurements were done with a USB2000 fiber coupled
spectrometer (Ocean Optics, Dunedin, FL). This instrument was
used because it provides good sensitivity and signal-to-noise
to measure the 337.1 nm laser line down to the 20% attenuator
setting, as well as providing a convenient optical fiber probe
to position inside the instrument. The measurements were
normalized and scaled to the maximum transmittance value
of 82%. The laser setting that had been empirically determined
was now measured in this way to yield 16-µJ energy per pulse,
post-attenuation. Since we now know all the interconversion
factors, we can readily calculate the laser energy delivered to
the target per shot by a simply reading the instrument’s laser
monitor. This is done once a week and adjustments are made
accordingly to compensate for fading laser energy over time.

2.7. Signal Processing. 2.7.1. Setup. Once acquired, the data
are stored with a naming convention that allows each sample
to be associated with its calibrant. The spectra are converted
from Bruker’s binary format to ASCII files containing two
columns of data (x: m/z, y: intensity) by a custom written
macro in FlexAnalysis (Bruker). For the lower mass range (700-
4000 Da), about 48 000 x,y points were generated while for the
upper mass range (4-15 kDa), there were about 77 000 points.

Further data processing was done in MATLAB (see below)
with a custom script called ‘Qcealign’ using only the ASCII
versions of the raw spectra. ‘Qcealign’ used the ‘Qpeaks’
program (Spectrum Square Associates, Ithaca, NY) for smooth-
ing, baseline subtraction and peak labeling. For these samples,
the singlet width parameter required by ‘Qpeaks’ was set to
-400 for the lower mass range and -200 for the upper mass
range, thereby specifying the resolution, (m/z)/∆(m/z), for
processing. This peak information was used automatically by
‘Qpeaks’ in setting the parameters for smoothing, baseline-
subtraction, and binning. The noise statistics were set to
‘Normal’.

Since each parameter has tremendous importance in the
processing, we created custom software written in MATLAB to
load and view individual spectra and examine the impact of
changing individual parameters. This software, called Signal
Processing & Preview (SPP), is a graphical viewer of the spectral
curves from ASCII files. It functions as an interface for DSP
(Digital Signal Processing) subroutines (provided by ‘Qpeaks’),
while hiding the technical details from the users. It can plot
raw and processed spectra side-by-side to review the outcome
of signal processing. The parameters of the DSP module can
be adjusted, if necessary, and the results are updated im-
mediately.

2.7.2. Processing. Once the parameters are selected, a setup
file is created. ‘Qcealign’ queries the setup file to obtain a list
of all the directories to be processed. During a single processing
run, all data files in all listed directories are aligned with each
other. For each directory, singletwidth information is provided
in the setup file, along with parameters controlling calibration,
peak labeling sensitivity, alignment, etc. In ‘Qcealign’, the files
containing the polypeptide standards are calibrated first. The
centroid positions of peaks in these calibration files are
obtained from the peak table created by ‘Qpeaks’ compared
to the known polypeptide peak positions, and a quadratic
calibration equation for correcting the measured masses in

each calibration file is created. The calibration equations are
saved to disk for use in calibrating the mass axes of the sample
files.

Next, ‘Qcealign’ creates a reference file to which all sample
spectra will later be aligned. The first data file is loaded and
calibrated by applying the curve calculated from its associated
calibrant spectrum. This file’s x-axis (m/z) becomes the x-axis
(and thus the calibration) used in the reference file. ‘Qcealign’
then loads all other sample files, calibrates them, and adds their
intensities to the reference file’s intensity. Calibrating the other
samples is important since it brings the samples’ peaks closer
to the position of the peaks in the calibrated reference file. Once
all samples are added, the reference spectrum becomes the
average of all the sample files. Peaks in the reference spectrum
are slightly broadened, compared to peaks in individual spectra,
because external calibration is imperfect. Alignment, an internal
calibration step, would refine the external calibration.

The reference is processed with ‘Qpeaks’ to find a baseline
which is then subtracted. The reference is normalized to unit
size by dividing each intensity value by the Total Ion Count
(TIC). Once normalized, a scaling factor is added by multiplying
each intensity value by a user-selected number (e.g., 107). This
scaling factor is constant within a data set and is used primarily
to set the normalized spectrum to a more “user-friendly” scale,
where most peak heights are greater than one. Next, ‘Qcealign’
processes each sample file with ‘Qpeaks’ to create a peak table,
smoothed curve and a baseline. This spectrum is then passed
on to alignment.

2.7.3. Alignment. ‘Qcealign’ aligns each spectrum to the
reference file, using a custom alignment algorithm called
“Entropycal”. The alignment algorithm slides the data file by
‘n’ data points to the right or left along the x-axis of the
reference file. At each relative position n, the Shannon entropy19

of the sum of the two files is computed. The alignment position
is the shift n that produced the minimum Shannon entropy of
the configuration. The data file is then returned with the x-axis
shifted. These data shift is equivalent to adjusting the zero-
point of time in the TOF spectrometer. Once aligned, the
smoothed spectrum, which is produced as a byproduct of the
‘Qpeaks’ processing, is then updated to reflect the aligned m/z
values and saved to disk after baseline-subtraction, normaliza-
tion and scaling. This final processed ASCII data is later visually
inspected in a custom built Mass Spectra Viewer.

The previously generated peak table is updated to reflect the
baseline-subtraction, normalization, scaling and alignment. The
peak information is added to a column of a master matrix.
Rows in the matrix represent integer m/z values; peaks are
written to the row closest to the calibrated m/z position of the
peak; columns represent samples. This matrix is needed later
for the ‘binning’ process. Separate peaklists with the peak
intensities and m/z values are saved to disk. This process from
the invoking of ‘Qpeaks’ to the saving of peak lists is repeated
for all samples. After all sample files are processed, the master
matrix of peak positions is queried, and positions of peaks in
the matrix are ‘binned’ to create a spreadsheet that can be used
for statistical analysis. This binning is done using the declared
resolution (m/z)/∆(m/z); all peaks in rows within ∆(m/z) of
the strongest peak at a given value of m/z are binned together.
Finally, the binned results are written to disk.

To study the impact of this methodology, we analyzed the
same data in two additional ways. In the first, we processed
raw spectra without calibration and alignment. In the second,
we added calibration, leaving out the alignment step. The
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results of all three analyses were then taken for similar statistical
analysis to examine the impact of each step. To implement the
two additional analyses, a custom MATLAB script was written
called “process_and_save.” This script is an earlier variant of
‘Qcealign’ that does not include alignment or binning. Using
this script, the first additional analysis was processed without
calibration. ‘Qpeaks’ was used with the same parameters as
described earlier. Baseline-subtraction, smoothing, normaliza-
tion and scaling was also done. The results of these two
additional steps were aligned by using a custom-made File-
maker Pro (Claris Corporation, Santa Clara, CA) database to
transform the peaklists into a spreadsheet format for statistical
analysis. The peaklists were imported into the database and
peaks from all related samples were then binned at 1500 ppm,
as described.18 Peaklists from the aligned samples were also
binned using 1500 ppm, allowing us to compare binning using
ppm and singletwidth.

2.8. MATLAB Software Tools. MATLAB (MathWorks, Natick,
MA) was chosen as a developing platform because of its high-
level programming language for quick deployment of applica-
tions. The current version contains three modules of visual-
ization and analysis tools:

2.8.1. Signal Processing & Preview. SPP functions as an
interface for signal processing subroutines (Qcealign), while
hiding the technical details from the users. SPP works in either
Single Mode or Batch Mode. In the single mode, raw and
processed spectral curves will be displayed side by side for
review. The investigator loads one or more representative
spectral data, fine-tunes the parameters of the DSP subroutine,
and examines the outcomes. Whenever processed data is not
available, the program will automatically call ‘Qcealign’ to
generate them. Furthermore, the user can modify the DSP
parameters that are passed on to ‘Qcealign’. After settling on
optimal parameters, a script will be generated automatically
to work in the batch mode, which processes large number of
spectral data in one command.

2.8.2. Mass Spectra Viewer. MSV is a visualization interface
for processed spectral data. MSV plots the spectra as X-Y
curves (mass vs magnitude) for examining the signatures of
several groups of samples. It provides flexible browsing func-
tions such as scroll, zoom, highlighting, etc. Besides visualiza-
tion, the second critical design is to provide the data manage-
ment for querying and categorization of large numbers of
samples. We incorporated the database design, which uses a
unique identification number (Sample_ID) for each entry. All
attributes associated with the spectra are identified by this ID.
Users can then search and classify single samples or groups of
samples based on their properties. The third aim of this
program is to handle large data sets (thousands of spectra) with
good responsiveness during loading, visualizing and saving
procedures. This is achieved by merging all processed spectra,
along with the unique Sample IDs, into an internal multidi-
mensional data storage (matrix). Disk operations are very rapid
because, instead of loading/writing thousands of spectra, MSV
reads from or writes to a single file. The speed of browse
function is also improved by plotting all the spectral curves
once and then rescaling the axis of the window. In this way,
stress on the video card and memory bus is reduced, because
only a small portion of data needs to be rendered. The
optimization is further enhanced by optional Resolution Con-
trol, which allows the user to control the number of points per
pixel plotted in the graph. For Matlab programs, these opti-
mizations improve performance significantly.

2.8.3. HeatMap. HM is a module specifically designed to
display the binned spreadsheet of spectral peaks coming from
the DSP subroutines. Peaks are plotted as a 2D heat map image
with sample names and normalized ion intensity values as the
X- and Y-position coordinates, in which the magnitudes of the
m/z are color coded on a gradient scale. In addition to the
ordinary browsing functions such as zoom and scroll, the user
has the option to reorganize the rank of X- and Y-position
coordinates, without the constraints of statistical correlation
that are enforced by most heat map commercial software
packages.

2.9. Statistical Analysis. The binned spreadsheet, containing
data from spectra obtained for all samples of cancer patients
or healthy subjects (59 samples total; 549 m/z values, with
normalized intensities for each sample; >33 000 data points),
was imported into the ‘GeneSpring’ program (Agilent; Palo Alto,
CA) and analyzed using various statistical algorithms such as
ANOVA, PCA, hierarchical clustering, K-NN and SVMs. In
‘Genespring’, an “experiment” was created to represent the
masses. No normalizations were applied to the experiment
since the masses were normalized by QceaLign. In the param-
eter section of the experiment, a parameter called “Cancertype”
was created to label samples as either Thryoid cancer or
Control. In Experiment’s Interpretation section, the Analysis
mode was set to “Ratio (signal/control)” and all measurements
were used. No Cross-Gene Error model was used either.

2.9.1. Mann-Whitney U Test. Once the experiment was
created, the m/z values (“peaks”) were filtered by using a
nonparametric test (Mann-Whitney U test). The Benjamini and
Hochberg method was used to adjust p-values for multiple
comparisons. The threshold for significance was an expected
false discovery rate less than 1 × 10-5. These tests are meant
to find peaks that show statistically significant differences
between the two groups studied.

2.9.2. Hierarchical Clustering. All the masses as well as the
ones selected from the Mann-Whitney test were then sub-
jected to clustering analysis using the available tool in ‘Gene-
spring’. The peaks were organized by creating mock-phyloge-
netic trees (dendrograms) called “gene trees” and “experiment
tree” in the software. The trees were displayed with the samples
along the X-axis and the masses along the Y-axis. The clustering
method for both trees also measured similarity by Standard
Correlation (also known as “Pearson correlation around zero”).

2.9.3. Class Prediction. K-nearest-neighbor (K-NN) analysis
was done by using the Class Prediction Tool in ‘Genespring’.
The training group was set to experiment created earlier. The
Parameter to Predict was set to Cancertype. The Gene selection
was set to use all 549 masses. The number of neighbors was
set to five with a p-value decision cutoff of 1. The K-NN was
used to cross-validate (using the ‘leave one out’ cross-validation
method) the training set. The SVM was done with the same
training set and parameters and set to cross-validate. The kernel
used was polynomial dot product (Order 1) with a diagonal
scaling of 0.

3. Results and Discussion

3.1. Serum Preparation and Handling. A comparison of
different serum preparations revealed that the type of tube used
for blood collection, the clotting times and clotting tempera-
tures all have a significant impact on the mass spectra of
peptide populations extracted from several cohorts of samples.
Our results showed that “biomarker patterns” with diagnostic
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accuracies of 100% in leave-one-out cross validation (LOOCV;
using k-NN or SVM) analysis could be discovered when
comparing the spectra generated from two identical sets of 32
different blood (control) samples prepared in either BD glass
(‘red-top’) or BD SST (‘tiger-top’) tubes (Figure 1A). As further
shown in Figure 1 (panels B and C), nonsupervised cluster
analysis and principal component analysis (see ‘Methods’ and
the ‘GeneSpring’ user manual) allowed easy segregation of the
two sample sets. A number of m/z values (‘peptides’) exhibited
remarkable “biomarker” potential; five of those (all with
adjusted p-values < 1 × 10-13) are shown in Figure 1D as color-
coded spectral overlays, together with one example (m/z )
1742; p-value ) 0.23) of other peptide peaks that did not
segregate the groups.

In a separate study, four blood samples from different
persons were collected in SST tubes and were allowed to clot
at RT for 5 min (‘t ) 0’), 1 h and 5 h, followed by sample
processing, peptide extraction and MS. As illustrated in Figure
2 for five different m/z peaks, intensities did vary in a time-
dependent manner, likely reflecting changes in abundance.
Sometimes intensity diminished (m/z ) 1062, 1077, 1352), but
in other cases it increased (m/z ) 1703, 2272). A possible

explanation is the degradation of plasma peptides or, on the
other hand, formation/accumulation of new peptides during
and after the clotting process.

Storage details of the samples are also critical. As shown in
Figure 3, the number of freeze-thaw cycles of sera (e.g., 2
versus 4) dramatically affects the resulting patterns observed
by MS, most likely due to peptide aggregation, precipitation
and adsorption to surfaces. At our institution, serum samples
are always frozen and thawed twice; the second thawing step

Figure 1. Effect of the blood collection tube on MS-based serum
peptide profiling. Blood from 32 healthy volunteers was collected
in both red-top and SST tubes following the protocol described
in Table 1. A. Red-top and SST tubes. B. Hierarchical clustering
of 32 serum samples prepared in both red-top (red) and SST
tubes (green). All 608 m/z peaks were used in the comparison.
C. Principal Component Analysis (PCA) of the 2 × 32 samples.
D. Overlay of mass spectra obtained from two groups of 32
samples. All spectra were processed as described in the methods
section, and are displayed using Mass Spectra Viewer (MSV) (see
Methods). The centroid of the bin and its Mann-Whitney
adjusted p-value to separate the two groups (red-top vs SST)
are shown for each peak.

Figure 2. Effect of clotting time on MS-based serum peptide
profiling. Blood samples from 4 healthy volunteers were collected
in 8.5-mL, BD Vacutainer SST tubes and allowed to clot at room
temperature for 5 min (orange), 1 h (green) and 5 h (blue). The
rest of the blood collection protocol was the same as in Table 1.
All spectra were processed as described in the methods section,
and are displayed using Mass Spectra Viewer (MSV) (see
Methods). The centroid of the bin is shown for 5 representative
m/z peaks.

Figure 3. Effect of freeze-thaw cycles on serum peptide profiling
using RP magnetic particles and MALDI TOF MS. Frozen sera (at
-80 °C) were thawed on wet ice, sampled and immediately
placed at -80 °C for 30 min; this was repeated 4 times. Aliquots
were taken after each freeze-thaw cycle and analyzed by the
automated RP-protocol and MALDI-TOF MS. A. Mass spectrum
from serum submitted to 2 freeze-thaw cycles. B. Mass spectrum
from serum submitted to 4 freeze-thaw cycles.
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immediately before peptide extraction and MS analysis (see
Table 1).

In sum, any systematic bias in serum preparation and/or
storage between two or more groups of samples can result in
a statistically relevant, yet clinically useless diagnostic tool. All
the above examples illustrate the importance of strict adher-
ence to a standardized protocol when test samples from
patients and healthy controls have been obtained from different
sources. We have therefore made a concerted effort to instruct
nurses, phlebotomists, messenger service staff, and clinical
technicians about the importance of strictly adhering to the
standard protocol.

3.1.1. Automated Solid-Phase Extraction. We also tested
how peptide extraction might affect the final results. Capturing
serum peptides on either a (hydrophobic) SELDI chip or RP-
magnetic particles is a critical process. We have previously
shown the effects of carbon chain length and the sample-to-
magnetic bead ratio (v/w).18 We have since observed that in
order to obtain total reproducibility, extraction of the peptides
must be done using the exact same batch of magnetic particles
and in a totally automated, randomized fashion. The spectra
shown in Figure 4 are derived from six identical aliquots of a
single serum sample, processed separately using the standard
automated protocol but with different batches of Chemicell
SiMAG-C8/K particles (arbitrarily designated C8_1 to 6). Note
that the tests were done under collaborative agreement with
the manufacturer and that none of the particles used here are
any longer commercially available. However, our laboratory has
acquired bulk quantities of the ‘C8_1’ batch, and those beads
have been used throughout all the tests and analyses described
herein. As illustrated in Figure 4, profound differences were
observed in peak patterns. We highly recommended that
anyone planning to use solid-phase RP extraction of serum
peptides for profiling purposes verify potential batch-depend-
ent differences of the particles of choice. This also applies to
SELDI-TOF MS; any one project should be done in its entirety
with the same lot of chips and the serum samples should ideally
be processed automatically as well.

After previously incorporating a liquid handler for fully
automated analyses, serum samples from patients and control
subjects were typically processed in consecutive runs and/or
were dispensed in the 96- or 384-format microvials, and
similarly applied to the target plates, arrayed as ‘blocks’. We
noticed that this approach could also lead to systematic bias
(data not shown). In our current procedure, a randomization
program (part of the LIMS) is used to position case and control
samples for processing. There are also no noticeable day-to-
day differences, as illustrated by the experiment shown in
Figure 5. Seven samples, taken from a single batch of com-
mercially available human serum, were analyzed in the pres-
ence of calibration standards over the course of seven weeks;
each sample every week, all randomized on the plate. Samples
analyzed on any particular day where then treated as a group
during subsequent data processing and nonsupervised hier-
archical clustering. Color-coding in Figure 5A,B is by day and,
clearly, there is no bias. All colors are scrambled in the
dendrogram (Figure 5A) and in the single, tight cluster resulting
from PCA (Figure 5B). Spectral overlay analysis of selected
peaks further suggests the absence of day-to-day bias (Figure
5C).

3.1.2. MALDI-TOF Mass Spectrometry. Another factor af-
fecting the results is the actual acquisition of the mass spectra.
Once the serum peptides are captured, they are eluted and

mixed with a UV-absorbing matrix in a fashion conducive to
laser-induced ionization and desorption. To this end, cocrystals
must be formed that are suitable for the production of
detectable peptide ions upon irradiation with a pulsed nitrogen
laser. This process is not entirely understood and must
therefore be optimized empirically for each type of sample.

Matrix-solvent composition has a major effect on sample
crystallization for MALDI, organic solvent type/concentration
and pH being the most important features 20. Different solvent
compositions have been previously evaluated, including varying
concentrations (in water) of MeCN, 2-propanol and mixtures
of MeCN/methanol, all with and without 0.1% TFA. We found

Figure 4. Effect of different batches of C8/K magnetic particles
on serum peptide profiling. Equal volumes of serum were
incubated with fixed-weight amounts of different batches of
SiMAG-C8/K RP beads (with variously modified properties) in
separate experiments. Beads were washed, eluted with 50%
acetonitrile in water, and the eluates analyzed, all as described
under ‘Methods’. Segments of the MALDI-TOF mass spectra
corresponding to peptides in the 0.7-4 kDa mass range (assum-
ing z ) 1) are shown.
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that mixtures of 40% acetonitrile/50% methanol/10% water,
without TFA, gave the maximum number of serum peptide
peaks in the spectra. This composition is similar to a com-
mercially available, premade matrix solution (Agilent) which,
in our hands, gives consistently satisfactory spectra. Another
key variable is crystal ‘stability’. We have noticed an adverse
effect of increasing the time between crystallization and mass
spectra acquisition. While we have no ready explanation for
this unexpected observation, we can easily control the effect
by taking all spectra within a maximum of 1-2 h after
completion of robotic sample processing.

The number of laser shots averaged for each mass spectrum,
which determines the signal-to-noise ratios for the serum
peptide ions, must also be pre-selected. From examining 36
published studies all utilizing SELDI-TOF to develop diagnostic
patterns of disease, it appears that the number of shots
averaged to produce a spectrum varied from 50 to 192,
delivered in 1 to 13 sets. Consequently, although these studies
all used the same biological fluid, they are virtually incompa-
rable. In addition, the authors never mention whether the
samples from the different case and control groups had been
randomized in space (e.g., on the target plates/strips; see
above) and over time for unbiased mass analysis. Each of the
above could potentially have skewed the data.

We conducted several experiments to evaluate the effects of
the number of averaged laser shots and the laser energy
delivered to the target per shot. Figure 6 gives the summary of

an extensive investigation, by comparing the empirically
determined optimal set of conditions (4 × 100 laser shots; 100
each in 4 different locations on the sample spot; laser shots
delivered on the target at 16 µJ ((10%) per shotssee below)
with suboptimal ones. Insufficient numbers of laser shots
resulted in very noisy spectra, even after smoothing and
baseline subtraction (Figure 6; top panel; ‘processed’). More
than 100 laser shots per location depletes the crystal and is
therefore ineffective; hence the 4 × 100 arrangement. Averaging
still more laser shots, e.g., 1000 (10 × 100) or more, did not
further improve the quality of the spectra (data not shown).
Note that the spectra in Figure 6 have been scaled to the same
size; in actuality, signals in the spectra resulting from averaging
10 or 50 laser shots were much lower than those obtained under
standard conditions. Somewhat different results were obtained
when changing the laser energy, where both higher and lower
settings than the empirically determined optimal conditions
resulted in deterioration of the spectra (Figure 6; bottom panel).
This observation has some consequences for the way laser
energy should be controlled. The Bruker AutoFlex MALDI-TOF
instrument (like most others) does not have a direct read-out
of the laser energy delivered to the target; instead it has probe

Figure 5. Reproducibility of automated, solid-phase peptide
extraction and MALDI-TOF MS. Seven runs consisting of 10
aliquots of the same serum sample randomized over a 96-
position micro-tube holder were done using the TECAN liquid
handler. Samples were independently processed and analyzed
over seven consecutive weeks, using SiMAG-C8/K magnetic
beads and the standard analytical protocol (see ‘Materials and
methods’). A. Hierarchical clustering was done on the seven runs,
whereby each run is represented with a different color. All 553
m/z peaks were used in the comparison. B. Principal Component
Analysis (PCA) of the seven runs using all the m/z. Colors are
the same used for hierarchical clustering. C. Overlay of mass
spectra obtained from the seven runs done over seven consecu-
tive weeks. All spectra were processed using the signal process-
ing described in the methods section, and are displayed using
Mass Spectra Viewer (MSV) (see Methods).

Figure 6. Effects of MALDI-TOF mass spectral acquisition vari-
ables on serum peptide profiling. Equal volumes of serum were
incubated with fixed-weight amounts of magnetic SiMAG-C8/K
beads, beads washed, eluted with 50% acetonitrile in water, and
prepared for MALDI-TOF MS. Spectra were acquired in linear
mode geometry. Segments of the MALDI-TOF mass spectra
corresponding to peptides in the 0.7-4 kDa mass range (assum-
ing z ) 1) are shown. All the spectra derive from the same
sample, at different locations in a single deposit on the target.
All the spectra were processed using the signal processing
described in the methods section. A. Three spectra were gener-
ated averaging different number of laser shots (indicated). The
raw and processed spectra are displayed using Mass Spectra
Viewer (MSV) (see Methods). B. Three spectra were generated
using different effective laser energy (indicated) delivered to the
target. Both the raw and processed spectra are displayed using
Mass Spectra Viewer (MSV) (see Methods).
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at the output of the laser, before the attenuator. We verified
the accuracy of this monitoring device and then calibrated the
settings of the attenuator (displayed on the computer screen
as an arbitrary scale of 100-0%) by measuring transmitted
energy at varying %. This allowed us to generate a calibration
curve to convert before-to-after attenuation laser energy. Laser
output energy is measured and documented on a weekly basis.
The gradual decrease in energy over time is then offset by
selecting a higher setting on the control. For example, the
setting had to be increased from an arbitrary 30% to 40% over
a six month time period to maintain an effective laser energy
of ∼16 µJ at the target plate.

Molecular mass calibration is another key issue. In nearly
all published reports on MS-based biomarker discovery, the
authors used some version of external calibration but exact
details are not mentioned. In one particular report, it is stated
that the external calibration was done on a weekly basis. In
our experience, it is simply not possible to have 0.1% (1000
ppm) mass accuracy when analyzing human serum peptides
in the linear mode of MALDI-TOF, as stated in most of the
SELDI-TOF papers, unless external calibration is done for each
sample by depositing peptide standards on the nearest-
neighbor spot location (see ‘Methods’). The effect on subse-
quent, uncorrected alignment in spectral overlays is clearly
illustrated in Figure 7 (top two panels), and it further improves
the results of computational alignment as well (see below).

3.1.3. Signal Processing. The final step before statistical
analysis is signal processing of the mass spectra. There are
several components to this step: smoothing, baseline correc-
tion, normalization, calibration/alignment, and peak labeling.
As long as the same signal processing is applied to all the
samples in a data set, there will be no systematic bias to
confound the statistical analysis. However, it is possible that
suboptimal signal processing will suppress or obscure the true
signal/information in the data.

One means to optimal signal processing is to employ
software in which an expert user (with a priori knowledge of

what the data should look like) can fine-tune as many param-
eters as possible. This may lead to good results but could be
time-consuming and would be difficult to reproduce without
expertise. Another approach is to use an algorithm that requires
few inputs from the user and makes few assumptions about
the data. The software that we used here, ‘Qpeaks’ (see also
under ‘Methods’), finds peaks in a spectrum and outputs
various information, including a peak table, smoothed trace
and an optional baseline. This table contains peak parameters
(apex positions, centroids, widths, areas), and standard errors
in the parameters. The peak-finding function rzrpic is based
on a Bayesian second derivative of the data. Smoothing is
accomplished with the Maximum Entropy (Maxent) smoothing
function rzresm. Both the Bayesian second derivative and the
Maxent smoothing are optimal in that they produce the best
possible results using only a single assumption: namely, a
width for peaks in the data (‘singletwidth’). They do not require
any additional parameters, such as polynomial degree used by
Savitsky-Golay algorithms. Bayesian and Maxent algorithms are
self-adjusting to the noise, so no “degree of smoothing”
parameter is required. This handling of noise means that the
Bayesian and Maxent functions cannot compromise resolution
by oversmoothing. Thus, the use of primarily one parameter
simplifies data processing without compromising data quality.
Additionally Qpeaks works well with low resolution data such
as the kind acquired in MALDI TOF linear mode, unlike many
other standard peak labeling algorithms which are optimized
for isotopically resolved spectra.

Once processed, the spectra need to be aligned to compare
similar peptides across samples, an operation that may be the
most difficult task in peptide profiling studies. A common
approach is to perform external calibration; i.e., peptides of
known molecular mass are analyzed alongside the samples. A
calibration curve is then calculated to adjust the x-axis of the
calibrant spectrum so that its known peaks fit their known
values. This curve can be applied to spectra of samples that
were spotted in nearby positions on the MALDI target. Ideally,

Figure 7. Effects of mass calibration and ‘Entropycal’-based alignment on mass spectra overlays. Fifty nine mass spectra obtained
from serum samples of control individuals and thyroid carcinoma patients are shown in overlay. All spectra have been smoothed and
baseline subtracted using the signal processing described in the methods section. Different mass calibrations were applied. Four regions
of the spectra were selected and they are displayed using Mass Spectra Viewer (MSV) (see Methods). Each mass spectrum region is
shown in a raw version (Raw), after external calibration (Calibrated) and after external calibration plus computer ‘Entropycal’ alignment
(Aligned). External calibration and ‘Entropycal’-based alignment are described in the methods section.
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each sample position on the target plate has an adjacent
calibrant spot. But despite the best possible external calibration,
m/z peaks representing identical peptides in different samples
deviate to various extents from the theoretical molecular mass.
They are slightly shifted to the left or right in the spectra, which
makes strict ‘numerical’ alignment (e.g., a spectrum divided
in 1-Da, consecutive segments) all but impossible. Usually to
correct this shift, a mass percentage window (estimated ac-
curacy of the data set, e.g., 0.15%) is applied along the mass
range instead, and common peaks across samples are binned
in this way. As a result, a composite peak list comprising all
samples is generated for statistical analysis. Detailed investiga-
tion revealed, however, that even such spectral alignments can
be the source of artifacts or noise, in particular leading to an
inflated number of peaks.

We found that a better approach to alignment is to apply a
function, termed ‘Entropycal’, which aligns sample data files
to a reference file using a minimum entropy algorithm, and
by taking unsmoothed (‘raw’), baseline-corrected data. Using
raw spectra for the alignment allows all the statistical informa-
tion in the data to be used. Processed data contains less
information. The alignment is performed in three steps: refer-
ence spectrum creation, ‘Entropycal’ and binning. First, a
reference spectrum is created by summing all the intensities
of all the calibrated samples together. This results in a
composite spectrum that contains the average of the peak
information from all the data sets. The x-axis of the reference
spectrum is the x-axis of the first calibrated sample. Next,
‘Entropycal’ slides each data file by n data points to the right
or left along the x-axis of the reference file. At each relative
position n, the Shannon entropy of the sum of the two files is
computed. The optimal alignment occurs at the shift that
produces the minimum Shannon entropy. Third, the aligned
peak lists are then binned by using the resolution of the
peaks: all peaks in rows within ∆(m/z) of the strongest peak
at a given value of m/z are binned together, and a spreadsheet
is created for further statistical analysis. Further details can be
found in the ‘Methods’ section.

This approach appears to complement the signal processing
of ‘Qpeaks’. Again, no a priori information is assumed and no
expert fine-tuning is required. In fact, no user intervention is
required as both reference spectrum and alignment parameters
are calculated on the fly. With an improved alignment (see
Figure 7; bottom panel) and binning, fewer (but higher quality)
peaks are passed on to statistical analysis. Further investigation
revealed that with this signal processing and alignment, less
noise and fewer artifacts are passed on to the statistical analysis.
We will illustrate the benefits of these signal processing routines
with an example, discussed below, that involved analysis of two
small cohorts (cancer and control) of serum samples.

3.1.4. Serum Peptide Profiling to Detect Thyroid Carci-
noma. Most thyroid cancer survivors are in surveillance
programs to detect tumor recurrences. The MSKCC Endocrine
Service performs in-depth evaluations on more than 350 high-
risk patients each year involving physical exams, blood work,
ultrasounds, and a variety of radiological procedures. Over the
past 10 years, on average, metastatic disease is found in
approximately one-third. Blood samples are routinely drawn
for a tumor marker (thyroglobulin). In a preliminary study, we
collected sera from 27 patients who had clear evidence for
residual metastatic (MET) thyroid carcinoma and from 32
healthy volunteers (mixed gender; ages between 22 and 50).
Specimens are linked to database records but were anonymized

and stripped of any patient identifiers to meet HIPPA guide-
lines. We have analyzed the peptide patterns in these sera to
determine if they can identify those who harbor metastatic
lesions with high diagnostic accuracy.

Blood collection, sera preparation, storage and handling,
automated peptide solid-phase extraction and mass spectrom-
etry were exactly as listed in Table 1, as described in the various
‘Methods’ and ‘Results’ sections herein, and as shown in the
diagram in Figure 10 depicting the entire serum peptidomics
operation. The main objective was to explore the impact of
signal processing on statistical analysis. First, using the ‘stan-
dard’ approach, external calibration and peak binning across
all 59 spectra, using an m/z tolerance of 0.15%, resulted in 938
unique bins or ‘peaks’. The resulting spreadsheet contains

Figure 8. Effect of mass calibration on statistical analysis.
Spreadsheets containing binned peaklists for 59 mass spectra
obtained from sera samples of 32 control individuals (green) and
27 thyroid carcinoma patients (blue) were imported into the
Genespring program. Two spreadsheets contained a binned
peaklist after smoothing, baseline subtraction and normalization
described in the methods section. However, mass calibration and
binning were different in the two sets: data with external
calibration and binning at 1500 ppm (Calibrated) and data with
external calibration and aligment using ‘entropycal’ (Aligned).
A. Hierarchical clustering using all the bins was done on the two
different signal-processing sets. B. Hierarchical clustering done
using the m/z that passed the Mann-Whitney set at p < 1 × 10-5

for the two sets: Calibrated and Aligned. C. Principal Component
Analysis (PCA) of the two sets using only the m/z that passed
the Mann-Whitney test at p < 1 × 10-5.
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55 342 entries listed as normalized intensities that vary over
roughly 4 orders of magnitude on an arbitrary scale. The
readout is similar to that of microarray gene expression
profiling and commercial ‘GeneSpring’ software was therefore
used to evaluate peptidomic data. The spreadsheet was used
to create a hierarchical cluster, using the Pearson correlation
(Figure 8A; left side panel), and for principal component
analysis (PCA; data not shown). A fairly good, but not perfect,
segregation of ‘Thyroid Cancer’ and control samples was
obtained. We then performed a nonparametric Mann-Whitney
test at the p < 1.0 × 10-5 level. Interestingly, 23 unique peptides
(∼2.5% of total) passed this selection whereas less than one
was expected by chance only (938 × 1.0 × 10-5). To get a visual
representation of the signal strength, these results were also
taken for hierarchical clustering and PCA analysis (Figure 8B
and C; left side).

When calibrated spectra were additionally subjected to the
‘Entropycal’ alignment and binning function, all peaks across
all 59 spectra could be merged into just 549 m/z bins. The
resulting data set allowed near perfect segregation of the
Thyroid cancer and control samples without any prior statistical
test to select the most discriminatory peaks; i.e., in a totally
unsupervised manner (Figure 8A; right side panel). Further-
more, 98 peptides (∼18% of total) passed a Mann-Whitney
test at p < 1 × 10-5. Clustering analysis and PCA using this
highly selected set of peaks (Figure 8B,C; right side) resulted
in a markedly improved result as compared to a data set
obtained by classical binning using % (m/z) tolerances. We
conclude that a much higher percentage (18 vs 2.5%) of highly
distinguishing spectral information is retained after a Mann-
Whitney test of data sets derived from well-aligned peak
patterns. By contrast, some of these peaks become spread out

over two to three bins during ‘standard’ binning, thereby
diluting marker potential. This was confirmed by comparing
the hierarchical clustering results for the two approaches
(Figure 8A).

To individually verify the above findings, the 98 selected m/z
peaks were visually inspected in color-coded overlays (using
the MSV) of all spectra of both sample cohorts. As can be
readily observed for 8 out of the 10 selected examples shown
in Figure 9, peak intensities may differ dramatically between
the two groups; sometimes consistently higher in all the cancer
samples, sometimes higher in all controls. The corresponding
adjusted p-values are all below 1.0 × 10-5. Two peaks shown
in Figure 9, at m/z ) 1868 and 2772, were not part of the
selected group of 98 and have little to no biomarker potential.
Note that some of the peaks shown in Figure 9, are also shown
in Figure 7, both in aligned and unaligned (‘raw’) overlays.

4. Conclusions

‘Molecular signatures’, a recent concept in biology and
medicine, are derived from qualitative and quantitative patterns
of entire groups of biomolecules (e.g., mRNA, proteins, pep-
tides, or metabolites) in a cell, tissue, biological fluid or an
organism. To apply this concept to biomarker discovery, the
measurements should ideally be noninvasive and performed
in a single read-out. In a previous report, we described a
prototype, MS-based technology platform for automated, solid-
phase extraction of peptides from biological fluids, coupled to
a direct MALDI-TOF read-out.18 We have since explored
whether this platform can reproducibly define peptide patterns
in human serum to look for ‘signatures’ that may indicate

Figure 9. Serum peptide signatures of thyroid tumor patients. Overlay of mass spectra obtained from serum samples of 32 control
individuals (green) and 27 thyroid carcinoma patients (blue). All spectra were processed using the signal processing described in the
methods section. Some m/z with either very small or large p-values, calculated using the Mann-Whitney test, were selected and are
displayed using Mass Spectra Viewer (MSV). The centroid of the peak and its Mann-Whitney p-value to separate the two groups
(controls and thyroid carcinoma) are shown for each peak.
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disease, such as the presence of cancer. While many analytical
variables had already been optimized and initial tests suggested
possible diagnostic potential, recent observations by us and
others have discovered previously unrecognized sources of
bias.6-10

Diagnostic peptide profiling must be rigorous, extremely
reproducible and free of bias to have any future clinical utility.
We have now evaluated, optimized, and standardized a number
of variables that may affect final spectral patterns; from
specimen collection, storage and handling, throughout all steps
of analytical chemistry and MS signal processing. Also, proper
alignment of spectra is essential to have any chance of
subsequent meaningful data mining. In fact, it makes biom-

arker pattern detection a task for which common statistical
tools are as good or even better suited than some of the recent
pattern recognition algorithms. Overall, the results have guided
us to outline a uniform sample preparation protocol (Table 1),
to develop adequate infrastructure, procedures, and software
tools (Figure 10), and to establish expertise, training, and
organizational structure within Memorial Sloan-Kettering’s
serum peptidomics program.

Using this improved analytical platform and a commercial
statistics program, we found that sera from patients with
metastatic thyroid carcinoma can be distinguished from healthy
controls based on an array of 98 discriminant peptides. This
limited application provides further proof that sera from

Figure 10. MSKCC serum peptidomics operation. Flowchart showing the various steps of the serum peptidomics approach described
in this report.
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patients with solid tumors contain peptides, detectable by
MALDI-TOF MS, that reflect presence of cancer. We speculate
that serum peptide signatures similarly derived from much
larger study sets could eventually rival diagnostic accuracy of
conventional cancer biomarkers. As we will increase the
stringency of statistical tests to select peptides that discriminate
between groups, fewer peptides will meet the criteria, but it
should push diagnostic accuracy higher. For instance, to
distinguish cancer subgroups or stages, to define the rate of
disease progression, or to predict and monitor responsiveness
to therapy, including recurrence.

To completely validate the prospect of serum peptide
profiling as a means to diagnostic marker or marker pattern
discovery, another major source of potential bias must first be
analyzed. Many patient related variables, such as gender, age,
genetic factors, drug treatment, and environmental, dietary,
behavioral, and psychological factors have never been system-
atically investigated. It is also not known whether patterns are
unique to each individual, and whether they can change with
physiological events or stay constant over time. We believe that
with the adequate technological and computational means as
well as the expertise now in place, and when using rigorously
standardized conditions, these issues can be addressed in
relatively short order. The ultimate proof of the value of this
new approach will be in the ability of other laboratories to
reproduce either the entire peptidomic patterns or to show that
the highly discriminatory peptides have the same amino acid
sequences.
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